Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jia-Geng Liu, ${ }^{\text {a }}$ Duan-Jun $\mathrm{Xu}^{\mathrm{a} *}$ and Chen-Hsiung Hung ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, National Changhua University of Education, Changhua, Taiwan

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.033$
$w R$ factor $=0.084$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2,2'-Diamino-4,4'-bi-1,3-thiazole

The centrosymmetric molecule of the title compound, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}$ (DABT), displays a trans planar configuration, except that the amino groups are inclined slightly to the bithiazole plane. The $\mathrm{N}-\mathrm{C}$ bond distance of 1.309 (2) \AA within the thiazole ring is shorter than in DABT chloride [1.335 (6) Å] and in a DABT-metal complex [1.322 (3) Å]. The separation of 3.717 (3) \AA between parallel bithiazole rings of neighboring molecules indicates a normal van der Waals contact.

Comment

Transition metal complexes with $2,2^{\prime}$-diamino- $4,4^{\prime}$-bithiazole (DABT) or its derivatives have shown interesting properties and potential application in many fields (Waring, 1981; Fisher et al., 1985). The structures of several complexes have been determined in order to understand the relationship between their properties and structures (Tian et al., 1996; Liu et al., 2001). The crystal structure of the title compound, (I), is reported here, to enable comparison of the structures of DABT in metal complexes and the uncomplexed state.

(I)

The structure of (I) is shown in Fig. 1. The centrosymmetric molecule displays a trans configuration, but the amino groups are inclined slightly to the bithiazole plane, with a dihedral angle of $14.8(3)^{\circ}$. The trans configuration is different from the cis configuration found in DABT-metal complexes (Tian et al., 1996; Liu et al., 2001), but agrees with that found in $2,2^{\prime}$ -diamino-4,4'-1,3-thiazolium dichloride (Liu et al., 2002). The $\mathrm{N} 3-\mathrm{C} 2$ distance of 1.309 (2) \AA within the thiazole ring is shorter than in the dichloride $[1.335(6) \AA]$ and in the DABT$\mathrm{Cu}^{\text {II }}$ complex $[1.322$ (3) \AA]. The $\mathrm{N} 6-\mathrm{C} 2$ bond distance of 1.354 (2) \AA suggests there is electron delocalization between the thiazole ring and the amino group.

Bithiazole rings of neighboring molecules, related by an inversion center, overlap each other with a normal van der Waals contact of 3.717 (3) A. Intermolecular hydrogen bonding is observed between the amino group and the N3 atom of a neighboring molecule, the $\mathrm{N} \cdots \mathrm{N}$ separation and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ angle being 3.187 (3) \AA and 156°, respectively.

Experimental

Fine crystals of DABT were obtained by the method of Erlenmeyer (1948). Single crystals of (I) were obtained as a by-product from an

Received 29 January 2003 Accepted 4 February 2003 Online 14 February 2003
aqueous solution during the preparation of a DABT-Mn(II) complex.

Crystal data	
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}$	$D_{x}=1.702 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=198.27$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / n$	Cell parameters from 2358
$a=5.151$ (2) A	reflections
$b=11.468$ (3) \AA	$\theta=4.3-27.2^{\circ}$
$c=6.555$ (3) A	$\mu=0.63 \mathrm{~mm}^{-1}$
$\beta=92.71$ (1) ${ }^{\circ}$	$T=150$ (1) K
$V=386.8$ (3) ${ }^{\text {A }}$	Prism, colorless
$Z=2$	$0.25 \times 0.20 \times 0.16 \mathrm{~mm}$
Data collection	
Bruker SMART CCD diffractometer	881 independent reflections 792 reflections with $I>2 \sigma(I)$
ω and φ scans	$R_{\text {int }}=0.036$
Absorption correction: multi-scan	$\theta_{\text {max }}=27.5^{\circ}$
(SADABS; Bruker, 1999)	$h=-6 \rightarrow 6$
$T_{\text {min }}=0.855, T_{\text {max }}=0.904$	$k=-14 \rightarrow 14$
2404 measured reflections	$l=-8 \rightarrow 7$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.084$
$S=1.10$
881 reflections
55 parameters
H-atom parameters constrained

Figure 1
A packing diagram of (I), with 50% probability displacement ellipsoids.

ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (29973036).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bruker (1999). SADABS, SMART and SAINT. Bruker Analytical X-ray Systems, Madison, Wisconsin, USA.
Erlenmeyer, H. (1948). Helv. Chim. Acta, 31, 206-210.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fisher, L. M., Kurod, R. \& Sakai, T. (1985). Biochem. 24, 3199-3207.
Liu, J., Nie, J., Xu, D., Xu, Y., Wu, J. \& Chiang, M. Y. (2001). Acta Cryst. C57, m354-m355.
Liu, J., Xu, D., Xu, Y., Wu, J. \& Chiang, M. Y. (2002). Acta Cryst. E58, o920o930.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tian, Y., Yang, F. \& Wang, H. (1996). Polyhedron, 15, 2771-2776.
Waring, M. J. (1981). Ann. Rev. Biochem. 50, 159-192.

